organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

4-Isopropyl-N-phenylcyclohexa-1,3diene-1-carboxamide

Yan-ging Gao, Shi-bin Shang,* Jian Li, Xu Xu and **Xiao-ping Rao**

Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Naniing 210042. People's Republic of China Correspondence e-mail: shangsb@hotmail.com

Received 24 August 2010; accepted 30 August 2010

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.003 Å; R factor = 0.056; wR factor = 0.175; data-to-parameter ratio = 15.2.

In the crystal structure of the title compound, C₁₆H₁₉NO, molecules are linked through a pair of N-H···O hydrogen bonds, forming chains along the a axis.

Related literature

The title compound was obtained by reaction of dihydrocumic acid, obtained from nopinic acid through dehydration, and aniline. For the preparation and structure of nopinic acid, see: Ma et al. (2007); Gao et al. (2009). For the preparation of dihydrocumic acid, see: Jin & Ha (2006) For oxidation of β pinene, see: Winstein & Holness (1955).

Experimental

Crystal data C₁₆H₁₉NO

 $M_r = 241.32$

Triclinic, $P\overline{1}$	V = 684.9 (2) Å ³
a = 5.226 (1) Å	Z = 2
b = 9.783 (2) Å	Mo $K\alpha$ radiation
c = 13.810 (3) Å	$\mu = 0.07 \text{ mm}^{-1}$
$\alpha = 88.31 \ (3)^{\circ}$	T = 293 K
$\beta = 88.01 \ (3)^{\circ}$	$0.30 \times 0.20 \times 0.20$ mm
$\gamma = 76.13 \ (2)^{\circ}$	

Data collection

R w

S 24

Enraf-Nonius CAD-4	2491 independent reflections
diffractometer	1901 reflections with $I > 2\sigma(I)$
Absorption correction: ψ scan	$R_{\rm int} = 0.013$
(North et al., 1968)	3 standard reflections every 200
$T_{\min} = 0.979, \ T_{\max} = 0.986$	reflections
2789 measured reflections	intensity decay: 1%
Refinement	

$[F^2 > 2\sigma(F^2)] = 0.056$	164 parameters
$R(F^2) = 0.175$	H-atom parameters constrained
= 1.01	$\Delta \rho_{\rm max} = 0.24 \text{ e } \text{\AA}^{-3}$
91 reflections	$\Delta \rho_{\rm min} = -0.22 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - \mathbf{H} \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$	
N-H0A···O ⁱ	0.86	2.27	3.054 (2)	151	
Symmetry code: (i) $x + 1, y, z$.					

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DS2053).

References

Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.

- Gao, Y.-Q., Shang, S.-B., Xu, X., Rao, X.-P. & Wang, H.-X. (2009). Acta Cryst. E65, o2748.
- Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Jin, J. Z. & Ha, C. Y. (2006). Chem. Ind. For. Prod. 26, 27-30.
- Ma, S. Y., Shen, M. M. & Ha, C. Y. (2007). Chem. Ind. For. Prod. 27, 114-116. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-
- 359. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Winstein, S. & Holness, N. J. (1955). J. Am. Chem. Soc. 77, 3054-3061.

supplementary materials

Acta Cryst. (2010). E66, o2490 [doi:10.1107/S1600536810034859]

4-Isopropyl-N-phenylcyclohexa-1,3-diene-1-carboxamide

Y. Gao, S. Shang, J. Li, X. Xu and X. Rao

Comment

Nopinic acid is an important material prepared by oxidation of beta-pinene (Ma, 2007), and the crystal structure of nopinic acid has been reported (Gao,2009). From nopinic acid, dihydrocumic acid was obtained through dehydration. The title compound was got by reaction of dihydrocumic acid and aniline. In this work, we describe the crystal structure of the title compound. The asymmetric unit consists of one crystallographically independent molecule. The independent molecules are linked through a pair of N–H…O hydrogen bonds forming a polymer.

The molecular structure is shown in Fig. 1 and the crystal packing in Fig. 2, where the dash line indicates N–H…O hydrogen bonds. The bond lengths and angles are given in Table 1.

Experimental

Dihydrocumic acid was (5.0 g) was dissolved in dichlomethane(100 ml) while stirring vigorously, thionyl chloride(6.6 ml) was dropped. The reaction was maintained during 6 h at the temperature of reflux. After removing dichlomethane and redundant thionyl chloride, the carboxylic acid chloride was obtained, which was then dropped in a mixture of dichlomethane(100 ml),triethylamine(6.1 ml) and aniline(5.6 g). The reaction was stayed over at room temperature. After reagent was romoved, the crude product was crystallized with ethanol, then the title conpound was gained. Crystals of the title compound suitable for X-ray diffraction were obtained by slow evaporation of a solution of ethanol. The crystal data were collected on an Enraf–Nonius CAD-4 difractometer. Data collection and cell refinement were performed using Enraf–Nonius *CAD-4 Software*.

Refinement

All H atoms bonded to the C atoms were placed geometrically at the distances of 0.96–0.98 Å and included in the refinement in riding motion approximation with $U_{iso}(H) = 1.2$ or $1.5U_{eq}$ of the carrier atom. H atoms bonded to the N atoms were fixed.

Figures

Fig. 1. A view of the molecular structure of (I), showing displacement ellipsoids at the 30% probability level.

Fig. 2. A view of the packing of the title compound.

4-Isopropyl-N-phenylcyclohexa-1,3-diene-1-carboxamide

Crystal a	lata
-----------	------

C ₁₆ H ₁₉ NO	Z = 2
$M_r = 241.32$	F(000) = 260
Triclinic, $P\overline{1}$	$D_{\rm x} = 1.170 {\rm ~Mg~m}^{-3}$
Hall symbol: -P 1	Mo K α radiation, $\lambda = 0.71073$ Å
a = 5.226 (1) Å	Cell parameters from 25 reflections
b = 9.783 (2) Å	$\theta = 9-13^{\circ}$
c = 13.810(3) Å	$\mu = 0.07 \text{ mm}^{-1}$
$\alpha = 88.31 (3)^{\circ}$	T = 293 K
$\beta = 88.01 \ (3)^{\circ}$	Rod, colourless
$\gamma = 76.13 \ (2)^{\circ}$	$0.30 \times 0.20 \times 0.20 \text{ mm}$
$V = 684.9 (2) \text{ Å}^3$	

Data collection

Enraf–Nonius CAD-4 diffractometer	1901 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.013$
graphite	$\theta_{\text{max}} = 25.3^{\circ}, \ \theta_{\text{min}} = 1.5^{\circ}$
$\omega/2\theta$ scans	$h = 0 \rightarrow 6$
Absorption correction: ψ scan (North <i>et al.</i> , 1968)	$k = -11 \rightarrow 11$
$T_{\min} = 0.979, \ T_{\max} = 0.986$	$l = -16 \rightarrow 16$
2789 measured reflections	3 standard reflections every 200 reflections
2491 independent reflections	intensity decay: 1%

Refinement

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H-atom parameters constrained
$w = 1/[\sigma^2(F_0^2) + (0.1P)^2 + 0.190P]$

	where $P = (F_0^2 + 2F_c^2)/3$
<i>S</i> = 1.01	$(\Delta/\sigma)_{\rm max} < 0.001$
2491 reflections	$\Delta \rho_{max} = 0.24 \text{ e} \text{ Å}^{-3}$
164 parameters	$\Delta \rho_{min} = -0.22 \text{ e } \text{\AA}^{-3}$
0 restraints	Extinction correction: <i>SHELXL97</i> (Sheldrick, 2008), Fc [*] =kFc[1+0.001xFc ² λ^3 /sin(20)] ^{-1/4}
Primary atom site location: structure-invariant direct	

Primary atom site location: structure-invariant direct Extinction coefficient: 0.086 (14)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	z	$U_{\rm iso}*/U_{\rm eq}$
Ν	0.2449 (3)	0.16425 (18)	0.09778 (11)	0.0458 (4)
H0A	0.3953	0.1648	0.0706	0.055*
0	-0.1955 (3)	0.2062 (2)	0.07382 (11)	0.0737 (6)
C1	0.3023 (9)	0.3380 (4)	-0.4181 (2)	0.1092 (13)
H1A	0.2422	0.2525	-0.4160	0.164*
H1B	0.4855	0.3171	-0.4026	0.164*
H1C	0.2796	0.3800	-0.4818	0.164*
C2	0.2353 (6)	0.5737 (3)	-0.3466 (2)	0.0852 (9)
H2A	0.2377	0.6100	-0.4119	0.128*
H2B	0.4093	0.5560	-0.3213	0.128*
H2C	0.1162	0.6414	-0.3072	0.128*
C3	0.1450 (5)	0.4384 (3)	-0.34559 (17)	0.0661 (7)
НЗА	-0.0370	0.4629	-0.3675	0.079*
C4	0.1360 (4)	0.3777 (2)	-0.24416 (15)	0.0524 (6)
C5	0.2943 (5)	0.2582 (2)	-0.21217 (15)	0.0574 (6)
H5A	0.4178	0.2047	-0.2547	0.069*
C6	0.2776 (4)	0.2095 (2)	-0.11182 (15)	0.0524 (5)
H6A	0.4138	0.1391	-0.0872	0.063*
C7	0.0686 (4)	0.2651 (2)	-0.05479 (14)	0.0459 (5)
C8	-0.1475 (5)	0.3782 (3)	-0.09523 (18)	0.0720 (8)
H8A	-0.2305	0.4400	-0.0436	0.086*
H8B	-0.2800	0.3359	-0.1211	0.086*
C9	-0.0495 (6)	0.4630 (3)	-0.17347 (19)	0.0803 (9)
Н9А	-0.1993	0.5186	-0.2078	0.096*

supplementary materials

H9B	0.0375	0.5277	-0.1439	0.096*
C10	0.0261 (4)	0.2093 (2)	0.04320 (14)	0.0479 (5)
C11	0.2431 (3)	0.1169 (2)	0.19526 (13)	0.0421 (5)
C12	0.4082 (4)	0.1589 (2)	0.25855 (15)	0.0504 (5)
H12A	0.5193	0.2149	0.2360	0.061*
C13	0.4081 (5)	0.1179 (3)	0.35443 (16)	0.0610 (6)
H13A	0.5183	0.1471	0.3966	0.073*
C14	0.2471 (5)	0.0344 (3)	0.38850 (17)	0.0670 (7)
H14A	0.2448	0.0082	0.4538	0.080*
C15	0.0880 (5)	-0.0104 (3)	0.32473 (19)	0.0678 (7)
H15A	-0.0184	-0.0691	0.3471	0.081*
C16	0.0850 (4)	0.0304 (2)	0.22861 (16)	0.0552 (6)
H16A	-0.0233	-0.0001	0.1863	0.066*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
Ν	0.0335 (8)	0.0635 (11)	0.0401 (9)	-0.0120 (7)	-0.0014 (7)	0.0048 (7)
0	0.0374 (8)	0.1279 (16)	0.0576 (10)	-0.0258 (9)	-0.0067 (7)	0.0244 (10)
C1	0.194 (4)	0.089 (2)	0.0460 (15)	-0.040 (2)	0.0213 (19)	0.0009 (14)
C2	0.098 (2)	0.0749 (18)	0.086 (2)	-0.0294 (16)	0.0137 (16)	0.0103 (15)
C3	0.0751 (16)	0.0754 (16)	0.0517 (13)	-0.0268 (13)	-0.0054 (11)	0.0128 (12)
C4	0.0595 (13)	0.0566 (13)	0.0453 (12)	-0.0216 (11)	-0.0079 (9)	0.0018 (9)
C5	0.0653 (14)	0.0595 (13)	0.0444 (12)	-0.0104 (11)	0.0073 (10)	-0.0029 (10)
C6	0.0548 (12)	0.0554 (12)	0.0449 (11)	-0.0095 (10)	-0.0012 (9)	0.0025 (9)
C7	0.0401 (10)	0.0592 (12)	0.0409 (11)	-0.0160 (9)	-0.0077 (8)	0.0010 (9)
C8	0.0486 (13)	0.101 (2)	0.0571 (14)	-0.0021 (13)	-0.0023 (10)	0.0125 (13)
C9	0.0794 (18)	0.0831 (19)	0.0611 (15)	0.0122 (15)	0.0004 (13)	0.0152 (13)
C10	0.0378 (11)	0.0647 (13)	0.0420 (11)	-0.0137 (9)	-0.0035 (8)	0.0012 (9)
C11	0.0331 (9)	0.0500 (11)	0.0400 (10)	-0.0036 (8)	-0.0006 (7)	0.0009 (8)
C12	0.0420 (11)	0.0614 (13)	0.0483 (12)	-0.0132 (9)	-0.0048 (9)	0.0024 (10)
C13	0.0540 (13)	0.0807 (16)	0.0450 (12)	-0.0084 (12)	-0.0103 (10)	-0.0001 (11)
C14	0.0555 (14)	0.0907 (18)	0.0456 (12)	-0.0021 (13)	0.0013 (10)	0.0171 (12)
C15	0.0517 (13)	0.0821 (17)	0.0687 (16)	-0.0180 (12)	0.0009 (11)	0.0259 (13)
C16	0.0451 (11)	0.0649 (14)	0.0581 (13)	-0.0180 (10)	-0.0079 (9)	0.0090 (11)

Geometric parameters (Å, °)

N—C10	1.367 (2)	С6—Н6А	0.9300
NC11	1.411 (2)	C7—C10	1.474 (3)
N—H0A	0.8600	С7—С8	1.490 (3)
O—C10	1.226 (2)	C8—C9	1.494 (4)
C1—C3	1.502 (4)	C8—H8A	0.9700
C1—H1A	0.9600	C8—H8B	0.9700
C1—H1B	0.9600	С9—Н9А	0.9700
C1—H1C	0.9600	С9—Н9В	0.9700
C2—C3	1.507 (4)	C11-C16	1.377 (3)
C2—H2A	0.9600	C11—C12	1.386 (3)
C2—H2B	0.9600	C12—C13	1.372 (3)

C2—H2C	0.9600	C12—H12A	0.9300
C3—C4	1.509 (3)	C13—C14	1.370 (4)
С3—НЗА	0.9800	C13—H13A	0.9300
C4—C5	1.333 (3)	C14—C15	1.381 (4)
C4—C9	1.478 (4)	C14—H14A	0.9300
C5—C6	1.458 (3)	C15—C16	1.374 (3)
C5—H5A	0.9300	C15—H15A	0.9300
C6—C7	1.338 (3)	C16—H16A	0.9300
C10—N—C11	125.04 (16)	C7—C8—C9	112.09 (19)
C10—N—H0A	117.5	С7—С8—Н8А	109.2
C11—N—H0A	117.5	С9—С8—Н8А	109.2
C3—C1—H1A	109.5	С7—С8—Н8В	109.2
C3—C1—H1B	109.5	С9—С8—Н8В	109.2
H1A—C1—H1B	109.5	H8A—C8—H8B	107.9
C3—C1—H1C	109.5	C4—C9—C8	114.0 (2)
H1A—C1—H1C	109.5	С4—С9—Н9А	108.7
H1B—C1—H1C	109.5	С8—С9—Н9А	108.7
C3—C2—H2A	109.5	С4—С9—Н9В	108.7
C3—C2—H2B	109.5	С8—С9—Н9В	108.7
H2A—C2—H2B	109.5	Н9А—С9—Н9В	107.6
C3—C2—H2C	109.5	OC10N	122.39 (18)
H2A—C2—H2C	109.5	OC10C7	121.11 (18)
H2B—C2—H2C	109.5	N—C10—C7	116.49 (16)
C1—C3—C2	110.9 (2)	C16—C11—C12	119.56 (18)
C1—C3—C4	114.6 (2)	C16—C11—N	122.18 (18)
C2—C3—C4	111.5 (2)	C12—C11—N	118.26 (17)
С1—С3—НЗА	106.5	C13—C12—C11	120.2 (2)
С2—С3—НЗА	106.5	C13—C12—H12A	119.9
С4—С3—НЗА	106.5	C11—C12—H12A	119.9
C5—C4—C9	117.8 (2)	C14—C13—C12	120.5 (2)
C5—C4—C3	125.0 (2)	C14—C13—H13A	119.7
C9—C4—C3	117.1 (2)	С12—С13—Н13А	119.7
C4—C5—C6	121.3 (2)	C13—C14—C15	119.2 (2)
C4—C5—H5A	119.3	C13—C14—H14A	120.4
С6—С5—Н5А	119.3	C15—C14—H14A	120.4
C7—C6—C5	120.8 (2)	C16—C15—C14	120.9 (2)
С7—С6—Н6А	119.6	C16—C15—H15A	119.6
С5—С6—Н6А	119.6	C14—C15—H15A	119.6
C6—C7—C10	123.12 (19)	C15—C16—C11	119.6 (2)
C6—C7—C8	118.97 (19)	С15—С16—Н16А	120.2
C10—C7—C8	117.54 (18)	C11—C16—H16A	120.2
C1—C3—C4—C5	14.4 (4)	C11—N—C10—C7	175.31 (18)
C2-C3-C4-C5	-112.5 (3)	C6—C7—C10—O	-142.6(2)
C1—C3—C4—C9	-170.4 (3)	C8—C7—C10—O	30.4 (3)
C2—C3—C4—C9	62.7 (3)	C6—C7—C10—N	38.6 (3)
C9—C4—C5—C6	2.7 (3)	C8—C7—C10—N	-148.4 (2)
C3—C4—C5—C6	177.9 (2)	C10—N—C11—C16	41.7 (3)
C4—C5—C6—C7	14.9 (3)	C10—N—C11—C12	-138.7 (2)
	5 Z		· /

supplementary materials

C5—C6—C7—C10	172.7 (2)		C16-	-C11-C12-C13	-1.9 (3)			
C5—C6—C7—C8	-0.2 (3)		N-C11-C12-C13			178.47 (19)		
C6—C7—C8—C9	-29.0 (3)		C11-	-C12-C13-C14		0.5 (3)	
C10—C7—C8—C9	157.8 (2)		C12-	-C13-C14-C15		1.2 (4)	
C5—C4—C9—C8	-32.6 (3)		C13-	-C14C15C16		-1.6 ((4)	
C3—C4—C9—C8	151.8 (2)		C14—	-C15-C16-C11		0.2 (4)	
C7—C8—C9—C4	44.7 (3)		C12-C11-C16-C15			1.5 (3)		
C11—N—C10—O	-3.5 (3)		N-C11-C16-C15			-178.9 (2)		
Hydrogen-hond geometry (Å. °)								
D—H···A		<i>D</i> —Н		H…A	$D \cdots A$		D—H··· A	
N—H0A····O ⁱ		0.86		2.27	3.054 (2)		151	

Symmetry codes: (i) x+1, y, z.

Fig. 1

Fig. 2

